Download and install QT Creator, configure the environment. Note that the MSVC compiler component is checked during installation. Use MSVC to compile the project. Configure MSVC 2017 x64 in Tools->Options->Build Kits->MSVC 2017 x64, and select the c and c++ compilers as amd64.
If the computer does not have the cdb.exe file (Search by Everything), download and install it. After installation, select Tools->Options->Build Kits->MSVC 2017 x64->Debugger (Debugger) and add cdb.exe.
Download OpenCV and libtorch. Configure the correct path to the project’s .pro file and add it at the end of the .pro file
1
2
3
4
5
6
7
8INCLUDEPATH += your path to\opencv-4.5.0-vc14_vc15\opencv\build\include \
your path to\libtorch17release\include \
your path to\libtorch17release\include\torch\csrc\api\include
LIBS += -Lyour path to\opencv-4.5.0-vc14_vc15\opencv\build\x64\vc15\lib -lopencv_world450 \
-Lyour path to\libtorch17release\lib -lc10 -ltorch -lc10_cuda -lcaffe2_detectron_ops_gpu -lc10d -ltorch_cpu \
-ltorch_cuda -lgloo -lcaffe2_module_test_dynamic -lasmjit -lcaffe2_nvrtc -lclog -lcpuinfo -ldnnl -lfbgemm -lgloo_cuda \
-lmkldnn -INCLUDE:?warp_size@cuda@at@@YAHXZThe project is configured in Release mode, qmake is successfully run, right-click the project to rebuild. Possible errors are:
Syntax error: identifier “IValue”…
change the codes in #include <torch/torch.h> to:1
2
3if /libtorch/include/ATen/core/ivalue.h and IValue_init.h throw errors, comment the following three lines
1
2
3/// \cond DOXYGEN_CANNOT_HANDLE_CONSTRUCTORS_WITH_MACROS_SO_EXCLUDE_THIS_LINE_FROM_DOXYGEN
C10_DEPRECATED_MESSAGE("IValues based on std::vector<T> are potentially slow and deprecated. Please use c10::List<T> instead.")
/// \endcondThe main.cpp for testing:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class ConvReluBnImpl : public torch::nn::Module {
public:
ConvReluBnImpl(int input_channel=3, int output_channel=64, int kernel_size = 3);
torch::Tensor forward(torch::Tensor x);
private:
// Declare layers
torch::nn::Conv2d conv{ nullptr };
torch::nn::BatchNorm2d bn{ nullptr };
};
TORCH_MODULE(ConvReluBn);
ConvReluBnImpl::ConvReluBnImpl(int input_channel, int output_channel, int kernel_size) {
conv = register_module("conv", torch::nn::Conv2d(torch::nn::Conv2dOptions(input_channel, output_channel, kernel_size).padding(1)));
bn = register_module("bn", torch::nn::BatchNorm2d(output_channel));
}
torch::Tensor ConvReluBnImpl::forward(torch::Tensor x) {
x = torch::relu(conv->forward(x));
x = bn(x);
return x;
}
int main(int argc, char *argv[])
{
//test torch
auto device = torch::Device(torch::kCUDA);
auto model = ConvReluBn(3,4,3);
model->to(device);
auto input = torch::zeros({1,3,12,12},torch::kFloat).to(device);
auto output = model->forward(input);
std::cout<<output.sizes()<<std::endl;
//test opencv
cv::Mat image = cv::imread("C:\\Users\\Administrator\\Pictures\\1.jpg");
cv::Mat M(200, 200, CV_8UC3, cv::Scalar(0, 0, 255));
if(!M.data)
return 0;
cv::imshow("fff",image);
cv::imshow("ddd",M);
cv::waitKey(0);
cv::destroyAllWindows();
//test qt
QApplication a(argc, argv);
MainWindow w;
w.show();
return a.exec();
}